LUBGWMA Strategic Implementation Area

Rob Hibbs; Agricultural Engineer, MS State Monitoring Specialist Agricultural Water Quality Program

Strategic Implementation Area

Focused on-the-ground efforts to locally identify and collaborate on water quality issues

Local Partner is Morrow SWCD

Collaboration & Cooperation

Very First Groundwater SIA

Lower Umatilla Basin Groundwater Strategic Implementation Area

AGRICULTURE

The SIA – What's ahead?

- LEARN Agricultural data, crops, irrigation, management
- LISTEN Irrigation & Nutrient
 Management Practices being utilized
- DEMONSTRATE & DOCUMENT Ag producers utilizing effective management practices with demonstration projects
- VERIFY Effectiveness of management practices to limit leaching

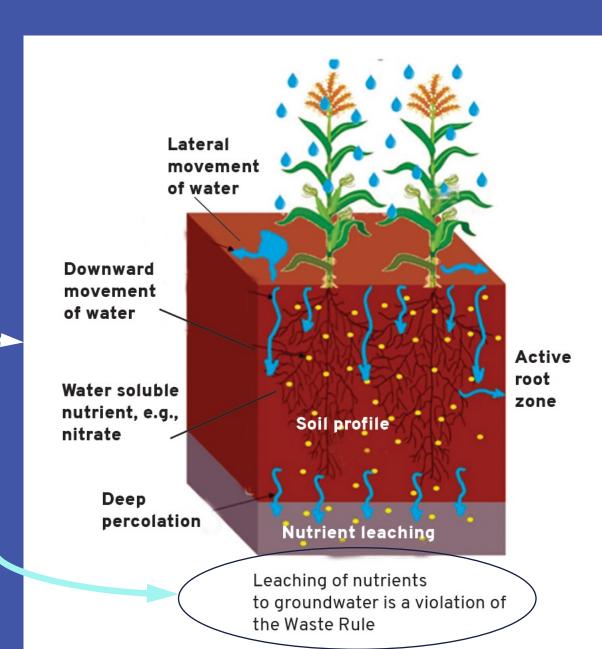
Irrigation - Know the Science

- Water carries the nutrients to groundwater don't overapply
- Keep the nutrients/water in the crop's root zone nutrients below the root zone is money lost
- ➤ Flood irrigation is not conducive to the LUB area, wastes 50% of irrigation water, most of which goes to groundwater
- Irrigation quantities must change through the season with weather and crop demand
- ➤ If irrigation water is flowing over land, the application rate is too high

Why is ODA Promoting Efficiency in Irrigated Ag?

It's the right thing to do, and it's the law

Oregon Statute 468B.025: Waste Law


No person shall cause pollution of any waters of the state or place or cause to be placed any wastes in a location where such wastes are likely to escape or be carried into the waters of the state by any means

Waste Rule

Waste – includes manure & fertilizer; when leached

Waters of the State – includes rivers & groundwater!

Nutrient Management

- Know the expected nutrient requirements for the crop – agronomic rate
- Know your soil and plant nutrient status through the season
- Apply nutrients according to when the crop can utilize the nutrients
- Keep records of nutrient application quantity & timing
- Know your costs and value: Will the application's cost be returned in value?

Water and Nutrients

Plan is to Balance

INPUTS should equal OUTPUTS

Irrigation INPUTS

Irrigation applied

+

Rain (Zero?)

=

OUTPUTS

Water evaporated + Water transpired (used by crops)

(Evapotranspiration)

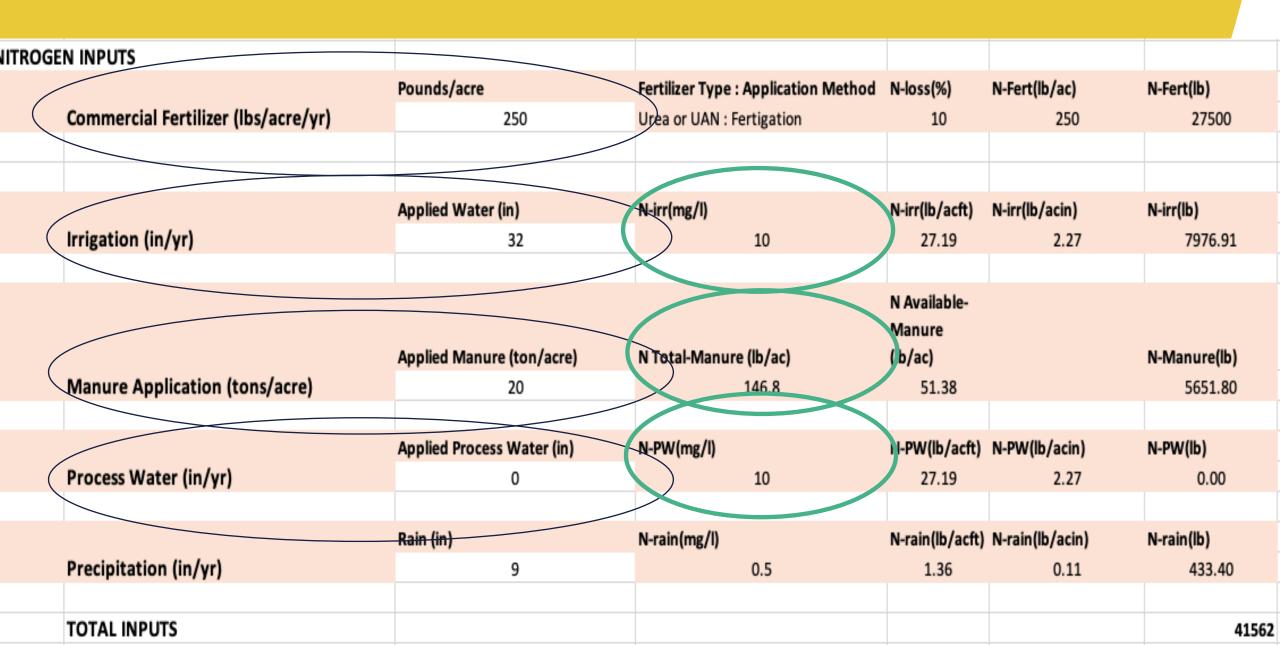
+

Runoff (Zero)

<u>Management Practices</u>

Irrigation Scheduling

Nozzle Sizing


Maintaining water in root zone

Monitoring soil moisture

Keeping records

Nitrogen Inputs

Nitrogen Outputs

IITROGEN OUTPUTS				
Harvest (units)			Nout-Harvest(lb/ac)	Nout-Harvest(lb)
			170	18700
Ammonia Loss (lb/acre)			Nout-Ammonia(lb/ac)	Nout-Ammonia(lb)
			25	10625
Denitrification (lb/acre)			Nout-N(lb/ac)	Nout-N(lb)
			9.79	1077
Runoff)		Nout-Runoff(lb/ac)	Nout-Runoff(lb)
			0.00	0
Leaching			Nout-Leach(lb/ac)	Nout-Leach(lb)
			0.00	0

Leachable N =

N Inputs - N Outputs - Change in Storage

Fertilizer
Manure
N Fixation
Irrigation
Process Water
Rain

Harvest Nitrogen Loss Runoff Change in Soil N

Manure N availability

Meisenger & Randall; Estimating N Budgets For Soil-Crop Systems; 1991

Nitrate Leaching Calculator; University of Wisconsin-Madison; 2023

Looking at the LUBGWMA as a Whole

ODA/Morrow SWCD Agricultural Crop & Rotation Inventory & Irrigation Type Inventory

Documentation & Verification of Best Management Practices

LUBGWMA Irrigated Ag Management

Strategic Implementation Area

- * Learn the management practices utilized in the Area
- * Working with the community, document best management practices for the LUB
- * Collaborate with community partners on technical assistance and funding opportunities
- * Verify Water Quality rules are being followed

Where to get help

Oregon Dept of Agriculture:

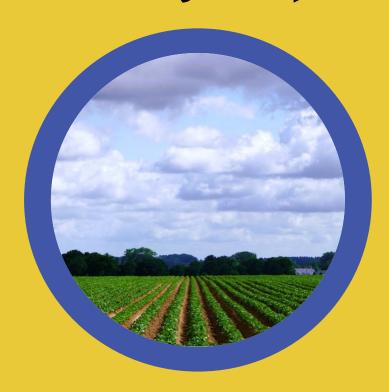
Shiloh Simrell - 971.969.6282; Rob Hibbs - 971.719.1576

Morrow Soil & Water Conservation District

541.676.5452: <u>www.morrowswcd.org</u>

Umatilla County Soil & Water Conservation District

541.278.8049: www.umatillacountyswcd.com


Natural Resources Conservation District (NRCS)

Heppner: 541.676.5021; Pendleton: 541.278.8049

https://oda.fyi/NRCSAssistance

Strategic Implementation Areas Initiative (SIA)-GWMA

Compliance
with Oregon's
Agricultural
Water Quality
Regulations

Collaborative Partnerships

Incentive-Based Conservation

Monitoring to Track Water Quality & Landscape Conditions

Thank You!

ODA Contact Information Rob Hibbs rob.hibbs@oda.oregon.gov 971-719-1576

